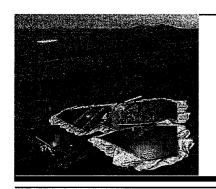
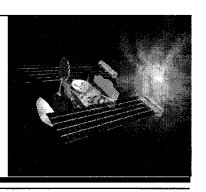


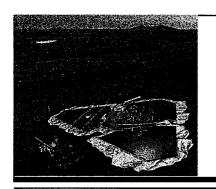
Probabilistic Risk Assessment for F-B-C NASA Space Missions

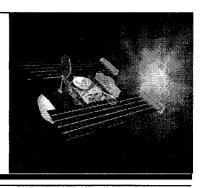

Dr. Ralph F. Miles, Jr.

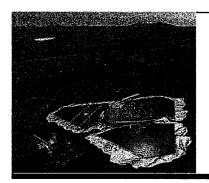
Jet Propulsion Laboratory/Retired California Institute of Technology Pasadena, California

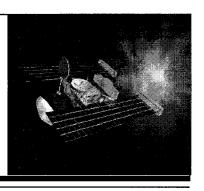

And

Reliability Engineering Program EER Systems Corporation Montrose, California

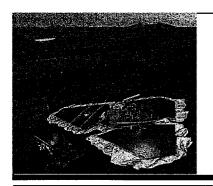

email: rmiles2@earthlink.net


New NASA Strategic Environment

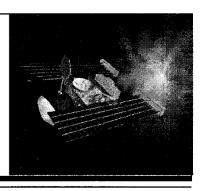

- ☐ F-B-C: Faster, Better, Cheaper.
 - No more "Flagship" projects.
 - Many launches a year.
 - Implementation time: 18 months.
- ☐ LCA: Life-Cycle Cost Analysis.
 - Cost before commitment.
 - Proposal development: One week.
- ☐ ISE: Intelligent Synthesis Environment.
 - Model-based design.
 - Petaflop (10¹⁵) computing capability.


Intelligent Synthesis Environment

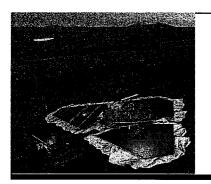
- Need end-to-end product life-cycle simulation.
 - Reduce uncertainty.
 - Use geographically distributed talent.
 - Capture design knowledge early in life-cycle.
 - Convert data into knowledge.
- ☐ Fact: Large percentage of cost committed with only small percentage of knowledge.
- □ Problem: How to close gap between design knowledge and cost commitment.

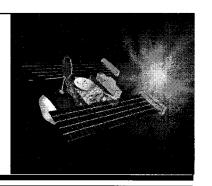


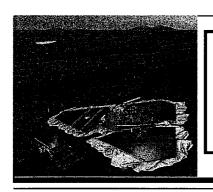
ISE Major Components

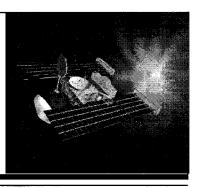


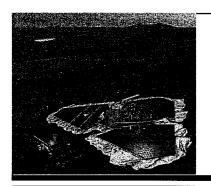
- ☐ Components.
 - 1. Dynamical interaction between humans and computers.
 - » CAVE, Vision, Dome.
 - » Entertainment industry far in lead.
 - » Rapid transition from data to intelligence.
 - 2. Infrastructure for distributed collaboration between diverse teams across world.
 - 3. Tools for rapid synthesis and simulation tools.
 - 4. Tools to link complete life-cycle simulation in a virtual collaborative environment.
- ☐ Hardware requirements.
 - Petaflop (10¹⁵) computing.
 - High-Speed Information Corridors.
- □ Cultural barrier.

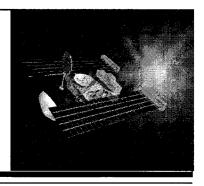

Ref: Dan Goldin, "Tools of the Future," NASA, Washington, DC, 31 January 1998.

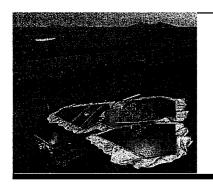

F-B-C Design Requirements

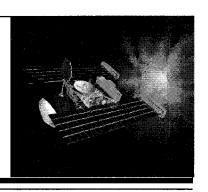

- ☐ Model-Based designs.
 - Experts provide models which are compounded up to mission level.
 - » Design and analysis done in real-time.
 - Requires explicit incorporation of uncertainty.
- □ F-B-C does not permit "Worst-case designs."
 - Risk cannot be designed out of missions.
- ☐ Rapid development cycle.
 - Requires extensive expert judgment.
 - » Minimize analysis, test time and cost.
- ☐ Will require extensive probability elicitation.
 - For all uncertainties.
 - » Randomness of nature (Aleatory or IAEA Type A).
 - » Specification error (Model uncertainty or IAEA Type B).
 - » Completeness (Unknown unknowns).

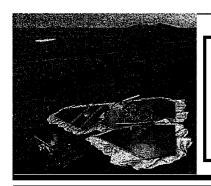

JPL Experience in Probabilistic Risk Assessment


- ☐ Flagship projects with Environmental Impact Statements.
 - Galileo to Jupiter (1989).
 - Ulysses to Jupiter and over the sun (1991).
 - Cassini to Saturn (1997).
 - » Launch: October 1997.
 - » Earth flyby: August 1999.
 - » Saturn arrival: 2005.
- ☐ Faster-Better-Cheaper Projects.
 - Mars Pathfinder (July 4, 1997 landing).
 - Stardust Project.
 - » Launch: 1999.
 - » Comet Wild 2: 2004.
 - » Earth return: 2006.


The Challenge

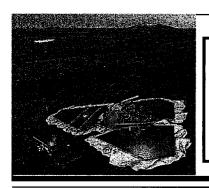

- ☐ Elicit probabilities from engineers with severely constrained time limits.
- ☐ Elicit probabilities from engineers with no training in assessing uncertainty with subjective probabilities.
- ☐ Elicit probabilities with limited management support.


Two F-B-C Missions

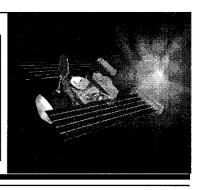

- □ Mars Pathfinder.
 - Landed "Sojourner Truth" Rover on Mars July 4, 1997.
 - Risk assessment done to assess feasibility of design.
 - » Entry, descent, and landing of Lander.
- ☐ Stardust Project.
 - Launch in 1999.
 - Encounter Comet Wild-2 in 2004.
 - Flyby of Earth in 2006.
 - Release science capsule to land in Utah desert.
 - Risk assessment done to assess feasibility of design.

JPL Implementation of SRI Phases of Flicitation

- ☐ Motivating.
 - Purpose.
 - Training.
- □ Structuring.
 - Done by System Engineer.
- □ Conditioning.
 - Discussion.
 - Training.
- ☐ Encoding.
 - Odds and reference events for extremes, equally likely for median.
- □ Verifying.
 - Examine and discuss resulting CDF.

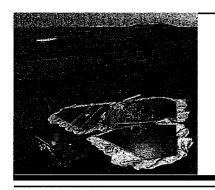


Quality of the Probabilistic Risk Assessment

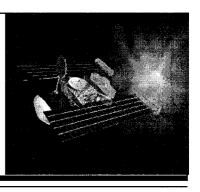


Rev. 1: June 1, 2000

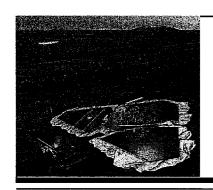
- ☐ Requisite Model.
 - Everything in the model needed for decisions.
 - Nothing in the model not needed for decisions.
- ☐ Substantive Goodness in elicitation.
 - Provided by the technology expert.
 - » Innate talent.
 - » Education and engineering experience.
 - » Specific knowledge of the event.
- □ Normative Goodness in elicitation.
 - Provided by the elicitor.
 - Training for the technology expert.

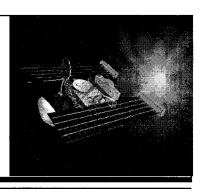


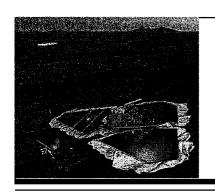
Requisite Models

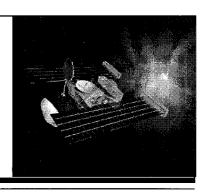


Rev. 1: June 1, 2000

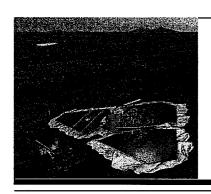

- ☐ Three step process.
 - 1. Project system engineer and risk assessor jointly developed Fault-Tree Model.
 - 2. Probability elicitation done with engineers cognizant for each critical event.
 - 3. Results "rationalized" by project engineer.
- ☐ Final result was expert opinion of project engineer.
- ☐ Fault-Tree was modeled in MS Excel.
- ☐ Uncertainties in failure of critical events.
 - Modeled as lognormal distributions.
 - CDF's of probabilities of failure.
- ☐ Monte-Carlo simulation for mission CDF.


Training Session.


- Not used for Mars Pathfinder EDL.
 - Problems resulted in confusing process with elicitation.
- ☐ Subsequently developed for Stardust Mission.
- ☐ Used Closing Dow Industrial 30 for same day.
 - Forty-five minute training session.
- ☐ Knowledge base.
 - Knowledge of market.
 - 90 days previous data.
- ☐ Training session well received.

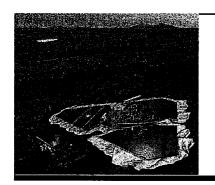

Dow 30 Industrials Stock Index

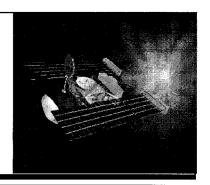
- ☐ Consider the Dow 30 Industrials Stock Index as an example of probability assessment.
- ☐ Given the data you are presented with and your prior knowledge, assess where the Dow will be at the end of the day.
- □ What are factors that could cause the Dow to be very low?
- What are factors that could cause the Dow to be very high?



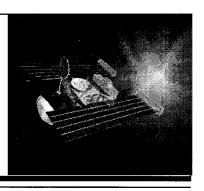
1% Assessment of Dow

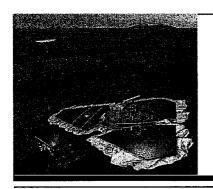
Rev. 1: June 1, 2000

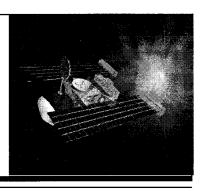

- ☐ This is called a "Bear Market."
- ☐ This is your most pessimistic assessment. It would be the value of the Dow if nearly all of the uncertainties were resolved unfavorably.
- ☐ This 1% assessment corresponds to Dow values for which the end-of-day values would be lower than your prediction only twice a year.
- □ For what value do you believe the Dow has only one chance in 100 of being lower at the end of the day?
 - Probability (1%) =

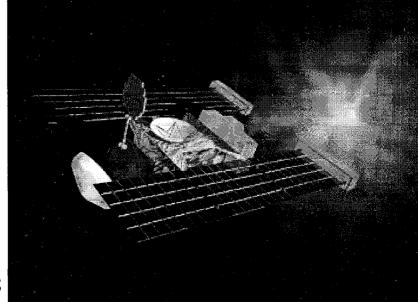

Assessment of Dow Probabilities

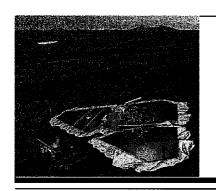
- □ For what probability do you believe the Dow has only x% chance of being lower at the end of the day?
 - Probability (1%) =
 - Probability (10%) =
 - Probability (50%) =
 - Probability (90%) =
 - Probability (99%) =


Sources of Knowledge for F-B-C Missions

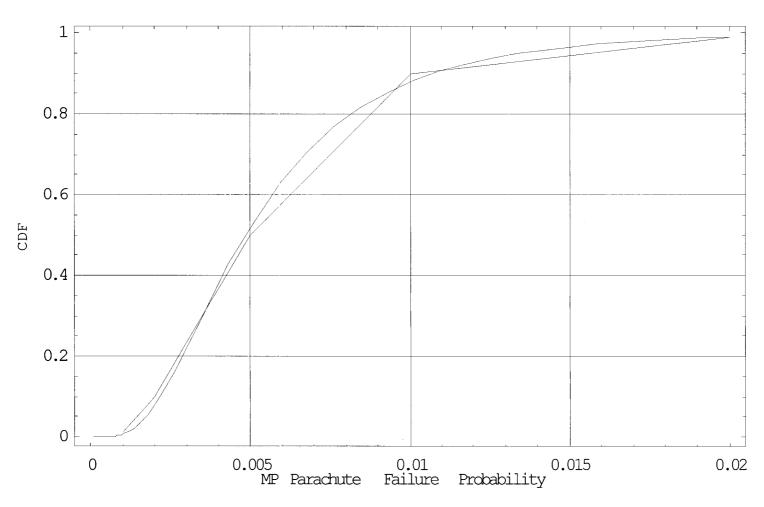

- □ Taxonomy for sources of F-B-C NASA space knowledge.
 - Flight experience.
 - Testing.
 - Analysis.
 - Expert judgment.
- ☐ All knowledge is a combination of these sources.
- ☐ Expert judgment always present.


Thinking About Failures

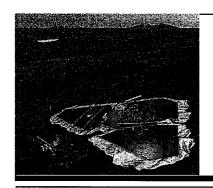

- ☐ Three perspectives on failure probabilities.
 - 1. Think about design, implementation, and operations of similar complexity. How often would this result in failure?
 - 2. Repeat the design, implementation, and operation for your event many times. How often would this result in failure?
 - 3. Think of failure events in your life for which statistical evidence exists. Is the failure of your event more or less probable?

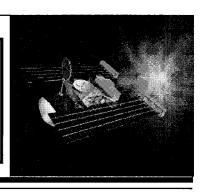


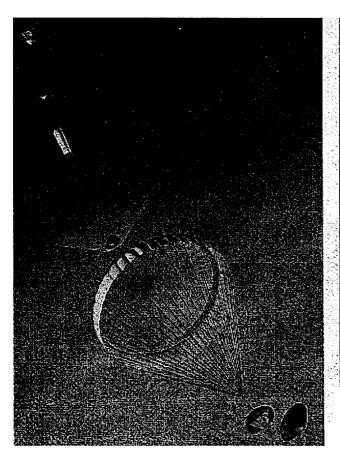
Typical Elicitation VG


- ☐ This is your most optimistic assessment. It would be the failure probability if nearly all of the uncertainties were resolved favorably.
- □ For what probability do you believe the "true value," if it could be known, has only one chance in 100 of being lower?
 - Probability (1%) =

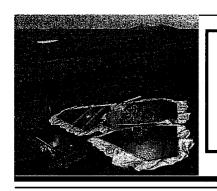
CDF Plot for Critical Event

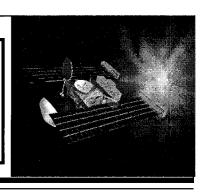



F-B-C Probabilistic Risk Assessment


VG 19

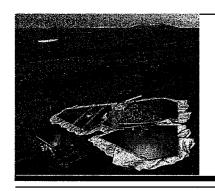
Rev. 1: June 1, 2000

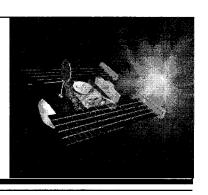

Mars Pathfinder Lander and Rover

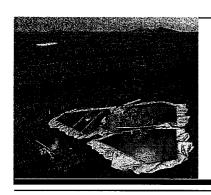


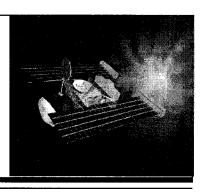
F-B-C Probabilistic Risk Assessment

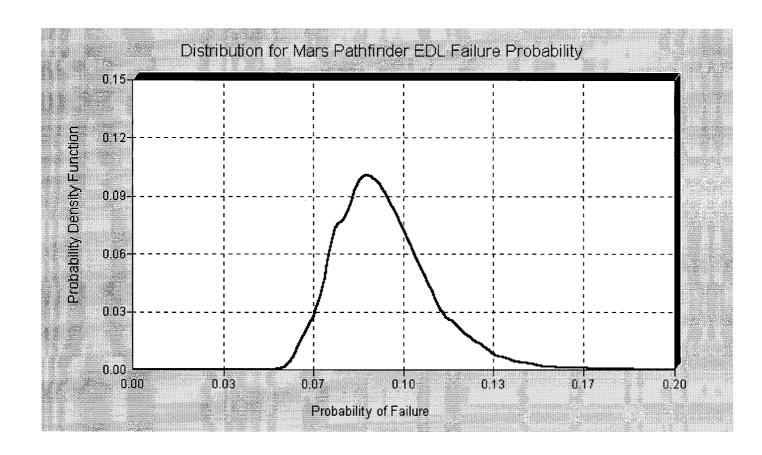
Mars Pathfinder Entry, Descent and Landing

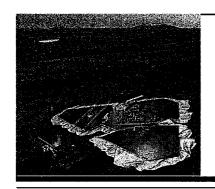

- ☐ Seven month cruise from Earth to Mars.
- ☐ Separate Lander from Cruise Stage (T 35 min).
- □ Atmospheric entry with ablative heat-shield (T 5 min).
- □ Parachute deploy and heat-shield separation (T 2 min).
- ☐ Radar locks on Mars Surface (T 25 sec).
- ☐ Airbags deploy (T 5 sec).
- □ Retro-rockets fire (T 3 sec).
- ☐ Free-fall from 15 meters (T 1 sec).
- □ Bounce on surface and roll to stop (1 km).
- \Box Deflate airbags and petal deployment (T + 3 hours).

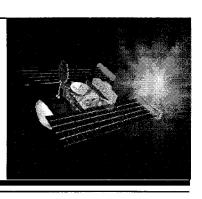

Mars Pathfinder Risk Assessment

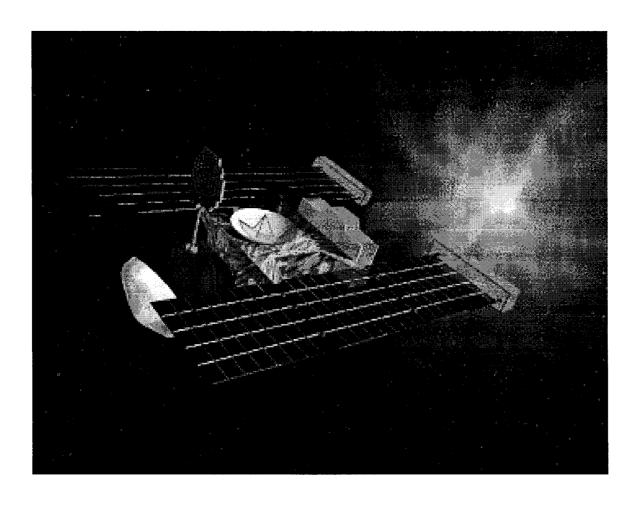

□ Entry-Descent-Landing risk assessment. ☐ All events in series--no redundancy. Mission modeled as series elements in MS Excel. Monte-Carlo simulation in @RISK. ☐ Cognizant engineers for each failure event interviewed. □ No training session for probability elicitation. Two Deputy Project Engineers independently assessed probability of failure at mission level. Results presented at launch-readiness review. PRA done too late in development to influence design. Did alert Project to areas needing extensive testing.

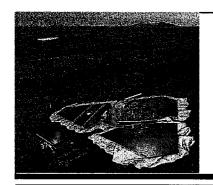

Mars Pathfinder Fault Tree

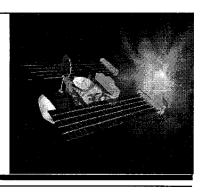


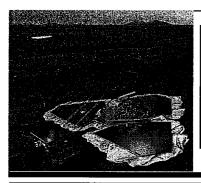

R. Mile	;3 JE	-	r 12, 1996 rcube Simulatio		T960812a	. Data Se	t: S. Thurm	all 0/12/3	,		
		Latin-пуре	rcube Simulatio	n; iu,uuu triais.	•						
		Mars	Pathfir	der EDL Failu		re Probability:					9.31%
Event				Probability		LogNorm Parm			LogNorm Dist		
				Median	90%	m	S	Mode	Mean	Std.Dev	
Entry,	Descer	nt, and L	anding Fai	lure					9.3E-2	2.1E-2	· · · · · · · · · · · · · · · · · · ·
	1 Entry								1.33E-2	4.8E-3	
***************************************	1	1.1 Cruise s	stage sep.	5.0E-4	1.0E-3	-7.60E+0	5.41E-1	3.73E-4	5.79E-4	3.37E-4	***************************************
		1.2 Guidano	ce error.	1.0E-3	2.0E-3	-6.91E+0	5.41E-1	7.46E-4	1.16E-3	6.75E-4	
		1.3 Thermal	protection.	5.0E-3	1.0E-2	-5.30E+0	5.41E-1	3.73E-3	5.79E-3	3.37E-3	
		1.4 Parachute deploy.		5.0E-3	1.0E-2	-5.30E+0	5.41E-1	3.73E-3	5.79E-3	3.37E-3	en e
	2 Descent								4.93E-2	1.85E-2	
		2.1 Heatshi	eld separate.	1.0E-3	2.0E-3	-6.91E+0	5.41E-1	7.46E-4	1.16E-3	6.75E-4	
		2.2 Bridle de	eploy.	5.0E-3	1.0E-2	-5.30E+0	5.41E-1	3.73E-3	5.79E-3	3.37E-3	
		2.3 Altimete	er operate.	5.0E-3	1.0E-2	-5.30E+0	5.41E-1	3.73E-3	5.79E-3	3.37E-3	
***************************************		2.4 Airbag i	nflation.	1.0E-2	3.0E-2	-4.61E+0	8.57E-1	4.80E-3	1.44E-2	1.50E-2	
••••••		2.5 Retro-ro	cket burn.	1.0E-2	2.0E-2	-4.61E+0	5.41E-1	7.46E-3	1.16E-2	6.75E-3	······································
		2.6 Bridle c	ut.	1.0E-2	2.0E-2	-4.61E+0	5.41E-1	7.46E-3	1.16E-2	6.75E-3	
	3 Landing								2.76E-2	8.28E-3	
		3.1 Surface	impact.	1.0E-2	2.0E-2	-4.61E+0	5.41E-1	7.46E-3	1.16E-2	6.75E-3	
	<u> </u>	3.2 Airbag r	etraction.	5.0E-3	1.0E-2	-5.30E+0	5.41E-1	3.73E-3	5.79E-3	3.37E-3	
		3.3 Petal de		1.0E-2	1.5E-2	-4.61E+0	3.16E-1	9.05E-3	1.05E-2	3.41E-3	
··········	4	AIM Flight (Computer	5.0E-3	1.0E-2	-5.30E+0	5.41E-1	3.73E-3	5.79E-3	3.37E-3	errore and the control of the contro

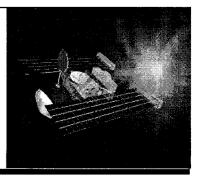

Mars Pathfinder PDF

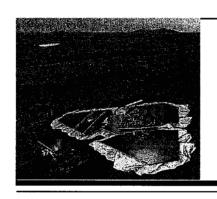


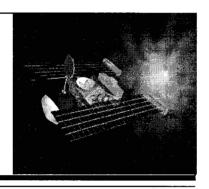


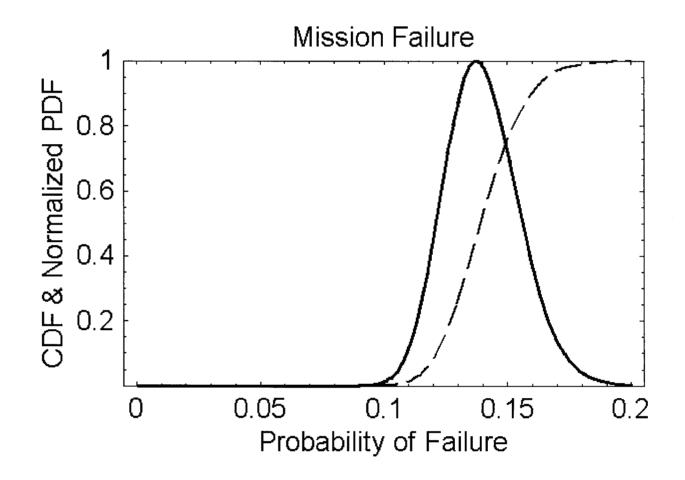

Stardust Spacecraft

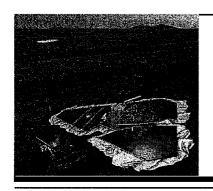



Stardust Risk Assessment

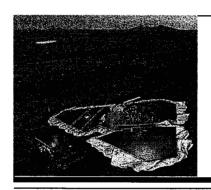

☐ Assessment from Launch Vehicle Separation to recovery of Science Capsule in Utah desert. ☐ All events in series---no redundancy modeled. ☐ Mission Modeled as series elements in MS Excel. ■ Monte-Carlo simulation in JPL Excel Add-In. ☐ Training sessions for all probability assessors. Probabilities elicited from cognizant engineers. ☐ Project engineer reassessed probability of failure at mission level. ☐ Results not formally presented by Project. ☐ PRA done too late in development to influence design. Design conservatism obscured true risk. F-B-C Probabilistic Risk Assessment

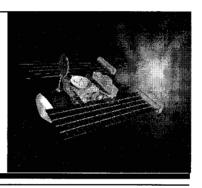

Prototype Stardust Fault Tree

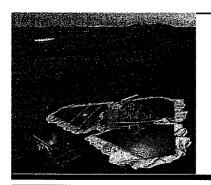


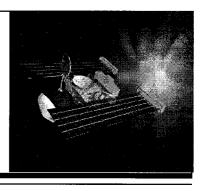

Event		Proba	bility Distrib	u tio n		Monte Carlo	
	50%	90%	Туре	Mean	Std De v	Mean	
General						2.295E-02	
S/C Structure (w/W hipple shield)	5.00E-03	1.00E-02	TLognorm al	5.788E-03	3.374E-03	5.788E-03	
A erogel perform ance	Not Credible F			0.000E+00	0.000E + 00	0.000E+00	
Propulsion (despin, TCM, jets)	5.00E-03	1.00E-02	TLognorm al	5.788E-03	3.374E-03	5.788E-03	
Fuel Loading for entire mission	5.00E-03	1.00E-02	TLognormal	5.788E-03	3.374E-03	5.788E-03	
SRC Retention/Release	5.00E-03	1.00E-02	TLognorm al	5.788E-03	3.374E-03	5.788E-03	
Launch						1.154E-02	
Launch vehicle injection	Not considere			0.000E+00	0.000E + 00	0.000E+00	
Launch vehicle separation	Notconsidere	d		0.000E+00	0.000E + 00	0.000E + 00	
ACS Despin	5.00E-03	1.00E-02	TLognormal	5.788E-03	3.374E-03	5.788E-03	
Solar Array Retention/Deployment	5.00E-03	1.00E-02	TLognorm al	5.788E-03	3.374E-03	5.788E-03	
C ru ise						5.640E-02	
SRC deployment & retraction	5.00E-03	1.00E-02	TLognorm al	5.788E-03	3.374E-03	5.788E-03	
Battery Operation	5.00E-03	1.00E-02	TLognormal	5.788E-03	3.374E-03	5.788E-03	
Star Cameras	5.00E-03	1.00E-02		5.788E-03	3.374E-03	5.788E-03	
Telecom Performance	5.00E-03	1.00E-02	TLognormal	5.788E-03	3.374E-03	5.788E-03	
Thermal perform ance	5.00E-03	1.00E-02	TLognormal	5.788E-03	3.374E-03	5.788E-03	
IM U & Accelerom eter	5.00E-03	1.00E-02	TLognorm al	5.788E-03	3.374E-03	5.788E-03	
ACSS/W IN C&DH	5.00E-03	1.00E-02	TLognormal	5.788E-03	3.374E-03	5.788E-03	
C & D H Hardware	5.00E-03	1.00E-02	TLognormal	5.788E-03	3.374E-03	5.788E-03	
C & D H S oftware	5.00E-03	1.00E-02	TLognorm al	5.788E-03	3.374E-03	5.788E-03	
Power	5.00E-03	1.00E-02	TLognorm al	5.788E-03	3.374E-03	5.788E-03	
Comet Encounter			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		***************************************	1.154E-02	
C & D H - no reset or swap	5.00E-03	1.00E-02	TLognorm al	5.788E-03	3.374E-03	5.788E-03	
ACS performance with impacts	5.00E-03	1.00E-02	TLognorm al	5.788E-03	3.374E-03	5.788E-03	
Flyby trajectory	Not credible fa		. Log., or u	0.000E+00	0.000E+00	0.000E + 00	
Collect 1,000 particles	Not credible fa			0.000E + 00	0.000E + 00	0.000E+00	
						0.0002.00	
Earth Return Phase						4.538E-02	
SRC Structure	5.00E-03	1.00E-02	TLognorm al	5.788E-03	3.374E-03	5.788E-03	
A eroshell aerodynam ics	5.00E-03	1.00E-02	TLognorm al	5.788E-03	3.374E-03	5,788E-03	
SRC Avionics (w/o battery)	5.00E-03	1.00E-02	TLognorm al	5.788E-03	3.374E-03	5.788E-03	
SRC Battery	5.00E-03	1.00E-02	TLognorm al	5.788E-03	3.374E-03	5.788E-03	
Parachute	5.00E-03	1.00E-02	TLognorm al	5.788E-03	3.374E-03	5.788E-03	
UHF Beacon	Not Credible Faliure			0.000E+00	0.000E + 00	0.000E + 00	
Heatshield/TPS performance	5.00E-03	1.00E-02	TLognorm al	5.788E-03	3.374E-03	5.788E-03	
SRC Vent	Not Credible F		***	5.788E-03	3.374E-03	0.000E + 00	
A erogel Canister Filter	5.00E-03	1.00E-02		5.788E-03	3.374E-03	5.788E-03	
Entry Trajectory	5.00E-03	1.00E-02	TLognorm al	5.788E-03	3.374E-03	5.788E-03	
Stardust Failure Proba	bility:		enterporture de la constante de		***************************************	1.401E-01	

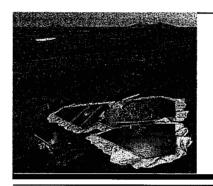
Prototype Stardust Mission PDF




MBA* Criteria


- 1. Experts are poor processors of information.
- 2. Effective techniques for reducing overconfidence.
- 3. Decompose the problem.
- 4. Aggregate multiple experts.
- 5. Use structured group processes.
- 6. Combine expert judgments using math methods.
- * A. Mosleh, V. M. Bier, and G. Apostolakis, Methods for the Elicitation and Use of Expert Opinion in Risk Assessment: Phase 1 -- A Critical Evaluation and Directions for Future Research, NUREG/CR-4962 and PLG-0533, Pickard, Lowe and Garrick, Inc., Prepared for the U.S. Nuclear Regulatory Commission, August 1987.


Critique of Process


- □ Done too late to influence design.
- Management and engineering biases present.
- Engineers don't understand statistical processes.
- Reluctance to accept subjective probabilities.
- ☐ Reluctance to accept PRA in general.

For Future Research

- □ New methodology and new culture needed for control of biases.
- ☐ Is a probability of a probability a probability? *
- □ Display PDF to expert.
 - CDF yields little feedback.
 - Fitting standard PDF to elicited CDF yields some feedback.
 - Need differentiable CDF.
 - » With strong monotonicity for unimodal PDF.
- ☐ Relation between knowledge and PDF.
 - Perhaps information theory has something to contribute.
- * Brian Skyrms, "Higher Order Degrees of Belief," in *Prospects for Pragmatism*, Essays In Honor of F. P. Ramsey, D. H. Mellor (Ed.), Cambridge University Press, Cambridge, pp. 109-137, 1980.

Probability Elicitation References

- ☐ MBA: Mosleh, Bier, and Apostolakis.
 - "Methods for the Elicitation and Use . . . In Risk Assessment"
 - » NUREG/CR-4962 & PLG-0533, August 1987.
- ☐ Hoffman, Hora, et al.
 - "A Guide for Uncertainty Analysis . . ."
 - » NCRP Comm. #14, 10 May 1996.
- ☐ Stanford/SRI/SDG/Stael von Holstein.
- ☐ Literature.
 - Von Winterfeldt and Edwards.
 - Morgan and Henrion.
 - Risk Analysis, Management Science, Plenum Press, JASA, Psychology, Nuclear Engineering, NRC, IEEE.